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ABSTRACT 

In this research, the Smoothed Particle Hydrodynamics (SPH) method has been used to model the 

dynamic behavior of solids under large deformation. In this regard, a set of combined equations for 

linear momentum, deformation gradient tensor, volume mapping, and area mapping (the co-factor 

of the deformation gradient tensor) is derived in form of first-order conservation laws. 

Subsequently, the corrected SPH method has been employed for spatial discretization within the 

solution domain. To reduce computational costs, explicit temporal discretization is considered using 

the third-order Runge-Kutta method. In the SPH meshless method, neighboring point information 

is utilized for computations. The primary objective of employing these equations in Updated 

Lagrangian description, where neighboring points may change at each time step, is enabling the 

simulation of severe deformation, which poses challenges for mesh-based approaches. Hence, the 

modeling capability of the proposed numerical method is examined by simulating the behavior of 

materials undergoing severe plastic deformation in the forging process. The simulation of the 

necking example demonstrates the model's capability to predict plastic behavior accompanied by 

large deformations. Additionally, simulation in the forging process accompanied by very large and 

complex deformations showed that the proposed meshless model can simulate such deformations 

without the need for ALE formulation or remeshing. 
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1. Introduction 

Forming processes are always accompanied by 

large deformations and consequently large strains. 

Simulating forming processes based on mesh-

based methods, including finite element method, 

requires mesh updating or adaptive meshing based 

on Arbitrary Lagrangian-Eulerian (ALE) 

formulations. Both of these approaches are 

computationally complex and have high 

computational costs. In meshless methods, 

computations are based on points values, which is 

a significant advantage, especially in simulating 

processes with severe deformations. Particle-

based methods can perform particle corrections in 

a more efficient manner, as the interpolation of the 

response to connect elements is not dependent on 

the existence of elements. However, the 

complexity of particle corrections remains a 

challenging aspect of this method. Additionally, 

meshless methods provide easier numerical 

implementation in three-dimensional cases 

compared to mesh-based methods. 

In most meshless methods, the approximation of 

variables and their derivatives is performed based 

on the values available at neighboring points and 

using a weighting function. The first meshless 

method is SPH, initially proposed by Gingold and 

Monaghan [1,2] for solving problems in 

computational physics. Monaghan and his 

colleagues have extended this method to 

computational mechanics problems [3–5]. Another 

meshless computational method is the 

Reproducing Kernel Particle Method (RKPM), 

which utilizes a weighting function, and its 

applications in computational mechanics can be 

found in references [6,7]. The use of the least 

squares minimization method is another approach 

to construct shape function, which first introduced 

in meshless methods by Nayroles [8], and later 

expanded by Belytschko and his colleagues under 

the name of Element-Free Galerkin (EFG) method 

[9–12]. The traditional SPH method is always 
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prone to instability. To address this issue, Bonet 

and Kulasegaram [13] modified the shape function 

to enforce stability conditions and improve 

accuracy. The modified SPH method with shape 

functions has been used to simplify the process. It 

has also been noted that integration at points in the 

modified SPH method still suffers from 

instabilities. These spatial instabilities resulting 

from the integration of the weakened form of the 

shape function are mitigated using the least 

squares stabilizing method. Belytschko and his 

colleagues [14], after stability analysis of particle-

based methods, stated that using a Lagrangian 

kernels and the stress points methods are the best 

approaches for discretizing particle-based 

algorithms. In fact, using Lagrangian-based 

kernels can eliminate tensile instability while 

having energy-free modes. 

Based on the capabilities of meshless methods, 

they can be used in simulating and analyzing metal 

forming and manufacturing processes. Alfano and 

colleagues [15] have studied the applications of 

meshless methods in metal forming. They 

investigated the natural element method in 

simulating forming processes involving large 

deformations. Their aim was to address the issue 

arising from boundary condition enforcement due 

to the failure of satisfying the Kronecker delta 

condition in most meshless methods. Xiong and 

co-workers [16] utilized the reproducing kernel 

particle method for analyzing bulk metal forming 

processes. They examined the capability of this 

method in simulating processes such as flat rolling, 

heading of cylindrical billets, and rod 

compression, comparing results with analytical, 

finite element analysis, and experimental results to 

assess the effectiveness of meshless methods, 

demonstrating that meshless methods can simulate 

severe plastic deformation without the need for 

remeshing. In another study, Xiong and colleagues 

[17] investigated the use of background cells in the 

reproducing kernel particle method for bulk metal 

forming applications. Chinesta and Cueto [18] 

reviewed the characteristics and capabilities of 

meshless methods, studying their usability in 

material forming simulation by examining their 

advantages and limitations. Costa and colleagues 

[19] simulated and optimized the extrusion process 

using the point interpolation meshless method, 

focusing on its accuracy and stability and 

providing guidelines for extrusion simulation with 

this method. 

Lee and co-workers [20] studied the application of 

meshless methods in simulating the additive 

manufacturing process for samples with complex 

and unusual geometries. They used meshless 

methods to create layers in additive manufacturing 

and compared simulation results with 

incrementally manufactured samples. Zhang and 

colleagues [21] utilized the smoothed particle 

hydrodynamics (SPH) method for simulating the 

cold spray additive manufacturing process. 

Chhillar and colleagues [22] used meshless 

methods to analyze the elastic-plastic behavior of 

metal parts during forming processes, 

investigating the effect of different weight 

functions on result accuracy. Another similar study 

is by Redrigues and colleagues [23], who 

employed the radial point interpolation meshless 

method to analyze the bending of laminates using 

high-order shear deformation theory. 

In numerical simulations of elastoplastic behavior 

in the presence of large deformations or 

hyperelastic materials, incompressibility 

conditions lead to volumetric locking and non-

physical pressure distributions. Various methods 

have been proposed to overcome this issue. One of 

these methods is the mixed-based formulation 

methodology, which has been implemented in 

recent years using different numerical method 

including finite element, finite volume Element 

free Galerkin, and SPH methods [24,25,34,26–33].  

In metal forming processes, such as forging, large 

deformations in the material lead to challenging 

issues in numerical simulations using mesh-based 

methods. Numerical simulation of such a problems 

encounter difficulty once a certain level of 

distortion in the elements is reached unless an 

appropriate mesh refinement is applied to deal 

with the distortions resulting from sever 

deformation. The problem of element distortion 

and consequently, remeshing, is the subject of 

many research in the field of mesh-based methods. 

By utilizing meshless numerical frameworks, 

these challenges can be overcome. 

In this study, a set of first-order conservation laws 

for linear momentum, the deformation gradient 

tensor, the area mapping tensor, and the volume 

mapping (determinant of the deformation gradient 

tensor) are derived in form of Updated Lagrangian 

description. The updated description means that 

neighboring particles of each target particle are 

recalculated at each solution step based on their 

new positions. After the change in the positions of 
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neighboring particles, it is necessary to update the 

shape functions and the gradient operator in the 

proposed meshless method. Therefore, the 

capability of modeling severe deformations using 

the proposed meshless method without 

encountering the issues arising from limited mesh 

adaptation has been developed. In addition, the 

modified SPH method is utilized for discretizing 

the mentioned conservation laws. Finally, the set 

of equations is explicitly solved using a third-order 

Runge-Kutta time integration approach. The 

modeling capability of the proposed method in the 

presence of large deformations and incompressible 

conditions is investigated through simulating the 

forging process. 

 

2. Materials and Methods 

2-1- Updated Lagrangian conservation laws 

The motion of a three-dimensional body, assuming 

constant temperature, from initial configuration 

with density 𝜌0, volume Ω𝑅, with boundary ∂Ω𝑅 to 

current deformed configuration with volume Ω and 

boundary 𝜕Ω over a period of time 𝑡 is considered 

according to Figure (1). The deformation of the 

body occurs through a one-to-one mapping 𝒙 =
𝜙(𝑿, 𝑡)  from initial coordinates 𝑿 to current 

coordinates 𝒙. For the body in question, the 

deformation gradient tensor, 𝑭, is defined as 

follows: 

𝑭 = 𝛁0𝜙(𝑿, 𝑡) =
𝜕𝜙(𝑿,𝑡)

𝜕𝑿
    (1) 

 

where the operator 𝛁0 represents the material 

gradient. Additionally, the velocity 𝒗(𝑿, 𝑡), linear 

momentum 𝒑(𝑿, 𝑡), area mapping 𝑯, and volume 

mapping 𝐽 are expressed as follows: 

𝐽 = 𝑑𝑒𝑡(𝑭) =
𝑑𝑣

𝑑𝑉
     (2) 

𝑯 =
1

2
 𝑭 × 𝑭      (3) 

𝒗(𝑿, 𝑡) =
𝜕𝜙(𝑿,𝑡)

𝜕𝑡
     (4) 

𝒑(𝑿, 𝑡) = 𝜌0𝒗(𝑿, 𝑡)     (5) 

 

where the symbol × denotes tensor multiplication. 

In this case, the conservation laws are expressed 

locally and in the Updated Lagrangian description 

as [25,34–37], 
𝜕𝒑

𝜕𝑡
− 𝑑𝑖𝑣𝒙𝝈 = 𝒃      (6) 

𝜕𝒇

𝜕t
− 𝑑𝑖v𝐱(𝒗⨂𝒊) = 𝟎     (7) 

𝜕𝒉

𝜕t
− 𝑐𝑢𝑟𝑙𝐱(𝒗 × 𝒇) = 𝟎    (8) 

𝜕𝑗

𝜕t
− 𝑑𝑖v𝐱(𝒉𝑇𝒗) = 0     (9) 

 

In these equations, 𝒃 represents the volumetric 

force, 𝝈 denotes the Cauchy stress tensor, 𝑐𝑢𝑟𝑙𝐱 

and 𝑑𝑖v𝐱 refer to the spatial curl and divergence, 

respectively. 𝒇, 𝒉, and 𝐽 represent the nodal values 

of the gradient of deformation, area mapping, and 

volume mapping, respectively, defined between 

two solution steps from 𝑛 to 𝑛 + 1 as follows: 

𝑭𝑛+1 = 𝒇𝑭𝑛;    𝑯𝑛+1 = 𝒉𝑯𝑛;    𝐽𝑛+1 = 𝑗𝐽𝑛  (10) 

 

The above equations are expressed as first-order 

conservation laws, which, by considering the 

general conservation variable 𝓤, flux 𝓕𝐼, and 

source term 𝓢, can be rewritten as a set of 

equations in a compact form as follows: 

𝓤 = [

𝒑
𝒇
𝒉
𝑗

] ;  𝓕𝐼 = − [

𝝈𝒆𝐼

𝒗 ⊗ 𝒆𝐼

𝒇 × (𝒗 ⊗ 𝒆𝐼)

𝒉: (𝒗 ⊗ 𝒆𝐼)

] ;   𝓢 = [

𝒃
𝟎
𝟎
0

] (11) 

 

 
Figure 1. Motion of a deformable three-dimensional body. 

 

With the standard approach, the weak form of the 

above equations can be obtained as follows [29], 

∫ 𝛿𝒗 ⋅
𝜕𝒑

𝜕𝑡Ω
𝑑𝑉 = − ∫ 𝝈

Ω
: 𝛁𝒙𝛿𝒗𝑑𝑉 + ∫ 𝛿𝒗 ∙

Ω

𝒃 𝑑𝑉 + ∫ 𝛿𝒗 ∙ 𝒕𝑑𝑎
𝜕Ω

     (12) 

∫ 𝛿𝜮𝒇:
𝜕𝒇

𝜕𝑡Ω
𝑑𝑉 = ∫ 𝛿𝜮𝒇Ω

: 𝛁𝒙𝒗𝑑𝑉   (13) 

∫ 𝛿𝜮𝒉:
𝜕𝒉

𝜕𝑡Ω
𝑑𝑉 = ∫ 𝛿𝜮𝒉Ω

: (𝒇 × 𝛁𝑥𝒗)𝑑𝑉 (14) 

∫ 𝛿𝛴𝑗:
𝜕𝑗

𝜕𝑡Ω
𝑑𝑉 = ∫ 𝛿𝛴𝑗Ω

𝒉: 𝛁𝑥𝒗 𝑑𝑉   (15) 
 

where 𝒕 is the surface traction vector, and 𝛿𝜮𝒇, 

𝛿𝜮𝒉, and 𝛿𝛴𝑗 are the virtual work conjugates of the 

stresses 𝜮𝒇, 𝜮𝒉, and 𝛴𝑗 respectively. 
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2.2. Spatial discretization using the SPH method 

To compute the value or gradient of any desired 

vector function 𝑻, the gradient approximation of 

this function at a target particle at position 𝒙𝑎 is 

considered. Particles within a specific range 

around the selected particle, denoted as Λ𝑎
𝑏  are 

taken into account. The value of the function is 

considered at points surrounding the target 

particle, and the value and gradient are calculated 

at the selected target point. 

𝑻(𝒙𝑎) = ∑ 𝑉𝑏𝑻𝑏𝑤𝑏(𝒙𝑎)𝑏𝜖Λ𝑎
𝑏    (16) 

𝛁𝒙𝑻(𝒙𝑎) = ∑ 𝑉𝑏(𝑻𝑏 − 𝑻𝑎)⨂𝛁̃𝑏𝜖Λ𝑎
𝑏 𝑤𝑏(𝒙𝑎) (17) 

 

In the above equations, 𝑤 represents the weight 

function, 𝑉𝑏 denotes the weight of point 𝑏, and 𝛁̃ 

represents the corrected gradient [28]. Using the 

above definitions, the discrete form of the weak 

statement can be derived as, 

𝑉𝑎
𝑑𝒑𝑎

𝑑𝑡
= ∑

1

2𝑏𝜖Λ𝑎
𝑏 (𝝈𝑎𝒈𝑎𝑏 − 𝝈𝑏𝒈𝑏𝑎) +

∑ 𝑫𝑎𝑏
𝑝

𝑏𝜖Λ𝑎
𝑏 + 𝑉𝑎𝒃𝑎 + 𝐴𝑎𝒕𝑎   (18) 

𝑉𝑎
𝑑𝑓𝑎

𝑑𝑡
= ∑

1

2𝑏𝜖Λ𝑎
𝑏 (𝒗𝑏 − 𝒗𝑎)⨂𝒈𝑎𝑏  (19) 

𝑉𝑎
𝑑𝒉𝑎

𝑑𝑡
= 𝒇𝑎 × (∑

1

2𝑏𝜖Λ𝑎
𝑏 (𝒗𝑏 − 𝒗𝑎)⨂𝒈𝑎𝑏) (20) 

𝑉𝑎
𝑑𝑗𝑎

𝑑𝑡
= 𝒉𝑎 : (∑

1

2𝑏𝜖Λ𝑎
𝑏 (𝒗𝑏 − 𝒗𝑎)⨂𝒈𝑎𝑏) +

 ∑ 𝐷𝑎𝑏
𝑗

𝑏𝜖Λ𝑎
𝑏        (21) 

 

where, 

𝒈𝑎𝑏 = 2𝑉𝑎𝑉𝑏𝛁̃𝑤𝑏(𝒙𝑎); 𝒈𝑏𝑎 = 2𝑉𝑎𝑉𝑏𝛁̃𝑤𝑎(𝒙𝑏)
      (22) 
𝑫𝑎𝑏

𝑝 = 𝑺𝑎𝑏
𝑝 (𝒗𝑎𝑏

𝑅 − 𝒗𝑎𝑏
𝐿 );   𝐷𝑎𝑏

𝑗
=

𝑆𝑎𝑏
𝑗

(∑ −𝑅
𝑗,𝑎𝑏 ∑ )𝐿

𝑗,𝑎𝑏     (23) 

𝑺𝑎𝑏
𝑝 =

𝜌𝑎𝑏
𝑎𝑣𝑒‖𝒈𝑎𝑏

𝑠𝑘𝑒𝑤‖

2
[𝑐𝑝

𝑎𝑣𝑒𝒏𝑎𝑏⨂𝒏𝑎𝑏 + 𝑐𝑠
𝑎𝑣𝑒(𝑰 −

𝒏𝑎𝑏 ⊗ 𝒏𝑎𝑏)]     (24) 

𝑆𝑎𝑏
𝑗

=
𝒈𝑎𝑏

𝑎𝑣𝑒⋅𝒈𝑎𝑏
𝑠𝑘𝑒𝑤

2𝜌𝑎𝑏
𝑎𝑣𝑒𝑐𝑝.𝑎𝑏

𝑎𝑣𝑒 ‖𝒈𝑎𝑏
𝑠𝑘𝑒𝑤‖

    (25) 

𝒏𝑎𝑏 =
𝒙𝑏−𝒙𝑎

‖𝒙𝑏−𝒙𝑎‖
     (26) 

 

In these equations, 𝑐𝑝
  and 𝑐𝑠

  represent the speeds 

of pressure and shear waves within the material, 

respectively, and the superscripts L and R denote 

the left and right values along the line between two 

neighboring particles in the linear reconstruction 

process [25]. Linear reconstruction leads to energy 

dissipation reduction in stabilizing the dynamic 

response with the proposed method. It should be 

noted that 𝐷 
𝑗 and 𝑫 

𝑝 are stabilized terms for the 

volume mapping and linear momentum 

conservation laws, respectively, which are 

generated using a Riemann solver [30]. 

2.3. Explicit time integration 

The set of combined equations presented is solved 

explicitly using the three-stage Runge-Kutta 

integration method. In this method, the variable 𝓤 

is updated in the time step ∆𝑡 = 𝑡𝑛+1 − 𝑡𝑛 as 

follows [29,33], 

𝓤𝑎
∗ = 𝓤𝑎

𝑛 + ∆𝑡𝓤̇𝑎
𝑛(𝓤𝑎

𝑛)    (27) 

𝓤𝑎
∗∗ =

3

4
𝓤𝑎

𝑛 +
1

4
(𝓤𝑎

∗ + ∆𝑡𝓤̇𝑎
∗ (𝓤𝑎

∗ ))    (28) 

𝓤𝑎
𝑛+1 =

1

3
𝓤𝑎

𝑛 +
2

3
(𝓤𝑎

∗∗ + ∆𝑡𝓤̇𝑎
∗∗(𝓤𝑎

∗∗))  (29) 

 

Explicit solution, unlike implicit solution, is not 

stable, and the time step must be chosen in a way 

that ensures the stability of the problem. This is 

governed by the speed of the pressure wave inside 

the body, for which the Courant-Friedrichs-Lewy 

(CFL) condition is used in the following form [38], 

∆𝑡 = 𝛼𝐶𝐹𝐿 min (
‖𝒙𝑎−𝒙𝑏‖

𝑐𝑝
𝑎𝑣𝑒 )    (30) 

 

where 𝛼𝐶𝐹𝐿 is the Courant-Friedrichs-Lewy 

stability coefficient. In this study, a value of 

𝛼𝐶𝐹𝐿 = 0.3 has been used. 

2.4. Elastic-plastic constitutive model 

The elastic-plastic behavior considered in this 

study assumes multiplication decomposition of the 

deformation gradient tensor, 𝑭, based on the 

intermediate configuration concept [39], 

𝑭 (𝑿, 𝑡) = 𝑭𝑒(𝑿, 𝑡) 𝑭𝑝(𝑿, 𝑡)     (31) 

in which 𝑭𝑒 and 𝑭𝑝 are elastic and plastic parts of 

the deformation gradient tensor, respectively. The 

left and right Cauchy-Green strain tensors can be 

defined as,  

𝑪𝑝 = 𝑭𝑝𝑇
𝑭𝑝, 𝑩𝑒 = 𝑭𝑒𝑭𝑒𝑇

    (32) 

Based on equations (31) and (32), the following 

relation can be derived, 

𝑩𝑒 = 𝑭𝑭𝑝−1
𝑭𝑝−𝑇

𝑭𝑇 = 𝑭 [𝑭𝑝𝑇
𝑭𝑝]

−1
𝑭𝑇 =

𝑭𝑪𝑝−1
𝑭𝑇       (33) 

Assuming isotropic material behavior and based 

on the idea of multiplication decomposition and 

the absence of stress in the intermediate 

configuration, the stress-strain response can be 

extracted from the following energy equation, 

𝑊 =
1

2
𝐺(𝑡𝑟[𝑩̅𝑒] − 3) +

1

2
𝐾 [

1

2
(𝐽𝑒2

− 1) − 𝑙𝑛𝐽𝑒]

       (34) 

𝑩̅𝑒 = 𝐽𝑒−2
3⁄
𝑭−𝑒𝑭𝑒𝑇

= 𝐽𝑒−2
3⁄
𝑩𝑒   (35) 
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According to the above equation, the stress is 

calculated as follows, 

𝝉 = 2𝑭𝑒 𝜕𝑊

𝜕𝑪𝑒 𝑭𝑒𝑇
= 𝐽𝑒𝑝𝑰 + 𝑺      (36) 

𝑝 =
𝐾

2

(𝐽𝑒2
−1)

𝐽𝑒       (37) 

𝑺 = 𝑑𝑒𝑣[𝝉] = 𝐺 𝑑𝑒𝑣 [𝑩̅𝑒]     (38) 
Where 𝝉, 𝑝 and 𝑺 are the Kirchhoff stress tensor, 

pressure, and deviatoric part of the Kirchhoff 

stress tensor, respectively. It should be noted that, 

according to the yield stress criterion, the yield 

limit can be estimated using the Mises equation for 

the yield surface, 

𝑓(𝝉, 𝜀 ̅𝑝) = ‖𝑺‖ − √
2

3
 [𝜏𝑦

0 + 𝐻 𝜀̅𝑝]  (39) 

Where 𝜏𝑦
0 is the initial yield stress and 𝐻 is the 

hardening/softening slope where can be a function 

of the equivalent plastic strain. The integration 

algorithm for the above constitutive model is 

described in appendix A. 
 

3. Results and Discussion 

In this section, the results of the analysis of two 

different models of forging using the proposed 

solution framework are presented. In both 

examples, the material behavior is assumed to be 

elastoplastic with linear hardening. In addition, a 

benchmark example. Necking of a circular bar, is 

investigated to demonstrate the ability of the 

proposed algorithm in modelling sever localized 

plastic deformation. 

3.1. Necking benchmark test 

In this section, a benchmark example extensively 

used for validating and assessing the accuracy of 

numerical solutions in simulating plastic 

deformation within the range of finite strain is 

considered [40,41]. 
Table 1. Material parameters for necking of a circular bar 

[40,41]. 

Material density 𝜌𝑅 7850 𝑘𝑔/𝑚3 

Young modulus 𝐸 117 𝐺𝑃𝑎 

Poisson ratio 𝜗 0.35 

Initial yield stress 𝜏𝑦
0 450 𝑀𝑃𝑎 

Saturation yield stress 𝜏𝑦
∞ 715 𝑀𝑃𝑎 

Hardening exponent 𝛿 16.93 

Linear hardening modulus 𝐻 129.24 𝑀𝑃𝑎 

This example simulates the necking process of a 

cylindrical rod. The geometry consists of a rod 

with a circular cross-section with a radius of 6.413 

mm and a length of 53.34 mm. The geometry of 

the specimen is shown in Figure (2). To induce 

localized deformation in the specimen, a small 

change in diameter in the middle section is 

considered, continuing linearly up to half of the 

specimen. Due to symmetry, only a quarter of the 

specimen is considered in the simulation to reduce 

computational costs. In all reference articles, 

nonlinear hardening behavior is considered for this 

simulation, where the yield stress changes 

according to the equation, 

𝜏𝑦(𝜀𝑝̅) = 𝜏𝑦
0 + 𝐻𝜀𝑝̅ + (𝜏𝑦

∞ − 𝜏𝑦
0)[1 − 𝑒−𝛿𝜀̅𝑝] (40) 

Here, 𝐻 is the hardening modulus, 𝜏𝑦
∞ is the 

saturated yield stress, and 𝛿 is the hardening 

exponent. The coefficients used in this simulation 

are presented in Table (1). The main objective of 

this example is to induce severe localized 

deformation within the body. 

 
Figure 2. Geometry for the quarter of the necking bar sample. 

Evolution of the diameter of the specimen during 

the necking process are considered as a criterion 

for the accuracy of numerical solutions in this 

example. In Figure (3), the final deformation of the 

specimen along with the equivalent plastic strain 

distribution and the distribution of von Mises 

stress are shown. To quantitatively assess the 

accuracy of the solution, changes in the diameter 

of the specimen in the necking zone as a function 

of its length are shown in Figure (4). The obtained 

results are compared with experimental and 

numerical results from various references in 

Figure (4), indicating a good agreement, 

demonstrating the accuracy of the equations and 

implementation in the proposed numerical 

method.
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Figure 3. Three-dimensional demonstration of the deformed sample with von Mises effective stress contour (left) and effective 

plastic strain distribution (right).

3.2. Forging a circular plate 

This example is taken from reference [35]. In the 

mentioned reference, this sample has been 

simulated using the finite element numerical 

solution method. In this study, the sample is 

modeled using the proposed meshless method. 

 
Figure 4. Normalized bar radius at the necking area versus 

normalized elongation [40,41]. 

 

The simulation involves analyzing the 

deformation of a circular sheet with a radius of 80 

millimeters and a height of 32 millimeters, as 

shown in Figure (5), subjected to compression. 

The material coefficients that used in the forging 

examples are provided in Table (2). The upward 

velocity of the mold is 𝑣 =  100 𝑚𝑚/𝑠, and the 

simulation is conducted over a period of 0.2 s, 

resulting in a displacement of the die of 20 mm. 

In Figure (6), the stages of deformation of the 

sample during loading along with the distribution 

of equivalent plastic strain and pressure are 

illustrated. In the simulation, plastic behavior 

with large deformations leads to incorrect and 

oscillatory distribution of pressure based on 

traditional displacement-based equations. In the 

equations presented in this study, the stabilizing 

component included in the equation governing the 

rate of change of the volume mapping has a key 

effect on solving this problem. As shown in 

Figure (6), the pressure distribution is smooth and 

free from oscillations and checkerboard patterns.  

 
Table 2. Material behavior coefficients [35]. 

Density 𝜌𝑅 8930 𝑘𝑔/𝑚3 

Young's modulus 𝐸 117 𝐺𝑃𝑎 

Poisson's ratio 𝜗 0.35 

Initial yield stress 𝜏𝑦
0 400 𝑀𝑃𝑎 

Hardening modulus 𝐻 100 𝑀𝑃𝑎 

 

 
Figure 5. Dies views and sample dimension in circular disk 

forging. 
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Figure 6. Various stages of plate deformation in the forming process at times {0.05, 0.1, 0.15, 0.2} seconds along with pressure 

distribution (left column) and equivalent plastic strain (right column).

3.3. Forging with complex dies 

This section presents the analysis of the forming 

process of a component using the forging method 

and two dies with complex geometry. The 

analysis is adapted from reference [36], which 

aims to apply finite element methods in the field 

of forging industries. In this study, the desired 

model, illustrated in Figure (7), is simulated using 

the meshless method based on the provided 

equations. The simulation of the forging process 

involves the movement of the top die at a constant 

speed of 166.65 mm/s, and the simulation is 

conducted over a period of 0.1 s. 

In Figure (5), various stages of deformation in the 

forging process 

with a complex mold at times {0.025, 0.05, 0.075, 

0.1} seconds are illustrated. Additionally, in 

Figure (8), the distribution of displacement and 

equivalent plastic strain at different stages of 

deformation is presented. The results demonstrate 

that the proposed model effectively simulates 

complex processes with large deformations 

without any additional efforts to eliminate mesh 

distortion induced by sever deformation. 
 

Figure 7. Views of the dies and sample in forming with 

complex dies.

 

Finally, in order to validate the results obtained 

using the proposed method, a comparison is made 

between the obtained results and the one is 

simulated by finite element solution using the 

ALE formulation with the commercial software 

Abaqus using the reduced integration hexahedral 

elements. Figure (9) depicts the contour plot for 

displacement and the equivalent plastic strain at 

simulation time 0.97 s. As shown, the SPH results 

agree extremely well with those obtained using 

the FEM method. 
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Figure 8. Different stages of deformation in the forming process with complex dies at times {0.025, 0.05, 0.075, 0.1} seconds 

along with displacement distribution (left column) and equivalent plastic strain (right column) 

 

  

(a) 

  

(b) 

  

(c) 
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(d) 

Figure 9. Comparison between SPH results and finite element simulation obtained by Abaqus software. displacement contour 

plot by (a) SPH and (b) FEM, equivalent plastic strain (PEEQ) obtained by (c) SPH and (d) FEM. 

  

4. Conclusions 

In this study, the implementation of combined 

relations in the form of first-order conservation 

laws for linear momentum, strain gradient, surface 

mapping, and volume mapping using Smoothed 

Particle Hydrodynamics (SPH) method was 

described. The updated Lagrangian-based 

equations were presented, where neighboring 

particles change with deformation, enabling the 

modeling of very large deformations without the 

need for mesh regeneration or adaptive mesh 

refinement (ALE). The capability of the proposed 

approach was examined through simulating the 

forging process. The results demonstrated that the 

proposed model can effectively simulate smooth 

pressure distributions and overcome the pressure 

checkerboard artifact commonly observed in 

displacement-based solutions. 

Appendix 

A. Integration algorithm for the von Mises J2 

plasticity model  

The standard return mapping algorithm to 

integrate the Kirchhoff stress tensor based on the a 

von Mises type plasticity model is described here 

for completeness in Algorithm 1 [39]. 

 

Algorithm 1. Return mapping algorithm for the 

standard J2 plasticity 

1. Obtain the input {𝑭𝑛+1 ,  𝐽𝑛+1 , 𝑪𝑛
𝑃−1

 , 𝜀𝑛̅
𝑃} 

2. Compute elastic trial values 

𝑩𝑛+1
𝑒 𝑡𝑟𝑖𝑎𝑙 = 𝑭𝑛+1𝑪𝑛

𝑃−1
𝑭𝑛+1

𝑇   

𝑺𝑛+1
𝑡𝑟𝑖𝑎𝑙 = 𝐺 𝑑𝑒𝑣 [𝑩̅𝑛+1

𝑒𝑡𝑟𝑖𝑎𝑙
]   

𝑝𝑛+1
𝑡𝑟𝑖𝑎𝑙 = 𝑝𝑛+1 =

𝐾

2
 
(𝐽𝑛+1

𝑒2
−1)

𝐽𝑛+1
𝑒   

3. Check yield condition using the trial stress 

𝑓𝑛+1
𝑡𝑟𝑖𝑎𝑙 = ‖𝑺𝑛+1

𝑡𝑟𝑖𝑎𝑙‖ − √
2

3
 [𝜏𝑦

0 + 𝐻 𝜀𝑛̅
𝑃]  

IF 𝑓𝑛+1
𝑡𝑟𝑖𝑎𝑙 ≤ 0 

Elastic step, set (∙)𝑛+1
 = (∙)𝑛+1

𝑡𝑟𝑖𝑎𝑙 

ELSE  

Go to the next step for return mapping. 

4. The return mapping step 

Compute ∆𝛾 using an iterative method 

𝑺𝑛+1 = 𝑺𝑛+1
𝑡𝑟𝑖𝑎𝑙 − 2𝐺̅∆𝛾𝒏 

𝒏 =
𝑺𝑛+1

𝑡𝑟𝑖𝑎𝑙

‖𝑺𝑛+1
𝑡𝑟𝑖𝑎𝑙‖

, 𝐺̅ =
1

3
𝑡𝑟(𝑩̅𝑛+1

𝑒 𝑡𝑟𝑖𝑎𝑙)𝐺 

5. Compute Kirchoff stress tensor 

𝝉𝑛+1 = 𝐽𝑛+1𝑝𝑛+1𝑰 + 𝑺𝑛+1  

6. Update  

𝜀𝑛̅+1
𝑃 =  𝜀𝑛̅

𝑃 + ∆𝛾 

𝑩̅𝑛+1
𝑒 =

𝑺𝑛+1

𝐺
+

1

3
𝑡𝑟(𝑩̅𝑛+1

𝑒 𝑡𝑟𝑖𝑎𝑙)𝑰  

𝑪𝑛+1
𝑃−1

= 𝑭𝑛+1
−1 𝑩𝑛+1

𝒆 𝑭𝑛+1
−𝑇
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